Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612741

RESUMEN

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.


Asunto(s)
Adiposidad , Sistemas Microfisiológicos , Animales , Ratones , Obesidad , Organoides , Adipocitos
2.
Medicina (Kaunas) ; 60(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38541159

RESUMEN

Background and Objectives: Muscle atrophy occurs when protein degradation exceeds protein synthesis, resulting in imbalanced protein homeostasis, compromised muscle contraction, and a reduction in muscle mass. The incidence of muscle atrophy is increasingly recognized as a significant worldwide public health problem. The aim of the current study was to evaluate the effect of whey peptide (WP) on muscle atrophy induced by dexamethasone (DEX) in mice. Materials and Methods: C57BL/6 mice were divided into six groups, each consisting of nine individuals. WPs were orally administered to C57BL/6 mice for 6 weeks. DEX was administered for 5-6 weeks to induce muscle atrophy (intraperitoneal injection, i.p.). Results: Microcomputer tomography (CT) analysis confirmed that WP significantly increased calf muscle volume and surface area in mice with DEX-induced muscle atrophy, as evidenced by tissue staining. Furthermore, it increased the area of muscle fibers and facilitated greater collagen deposition. Moreover, WP significantly decreased the levels of serum biomarkers associated with muscle damage, kidney function, and inflammatory cytokines. WP increased p-mTOR and p-p70S6K levels through the IGF-1/PI3K/Akt pathway, while concurrently decreasing protein catabolism via the FOXO pathway. Furthermore, the expression of proteins associated with myocyte differentiation increased noticeably. Conclusions: These results confirm that WP reduces muscle atrophy by regulating muscle protein homeostasis. Additionally, it is believed that it helps to relieve muscle atrophy by regulating the expression of myocyte differentiation factors. Therefore, we propose that WP plays a significant role in preventing and treating muscle wasting by functioning as a supplement to counteract muscle atrophy.


Asunto(s)
Dexametasona , Suero Lácteo , Ratones , Animales , Dexametasona/efectos adversos , Suero Lácteo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Péptidos/efectos adversos
3.
Int J Stem Cells ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267367

RESUMEN

Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.

4.
Nutrients ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068826

RESUMEN

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Animales , Ratones , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular , Osteogénesis
5.
Food Chem Toxicol ; 178: 113890, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308052

RESUMEN

Evaluating tissue injury largely depends on serum biochemical analysis despite insufficient tissue specificity and low sensitivity. Therefore, attention has been paid to the potential of microRNAs (miRNAs) to overcome the limitations of the current diagnostic tools, as tissue-enriched miRNAs are detected in the blood upon tissue injury. First, using a cisplatin-injected rats, we screened a specific pattern of altered hepatic miRNAs and their target mRNAs. Subsequently, we identified novel liver-specific circulating miRNAs for drug-induced liver injury by comparing miRNA expression changes in organs and serum. RNA sequencing revealed that 32 hepatic miRNAs were differentially expressed (DE) in the cisplatin-treated group. Furthermore, among the 1217 targets predicted using miRDB on these DE-miRNAs, 153 hepatic genes involved in different liver function-related pathways and processes were found to be dysregulated by cisplatin. Next, comparative analyses of the liver, kidneys, and serum DE-miRNAs were conducted to select circulating miRNA biomarker candidates reflecting drug-induced liver injury. Finally, among the four liver-specific circulating miRNAs selected based on their expression patterns in tissue and serum, miR-532-3p was increased in the serum after cisplatin or acetaminophen administration. Our findings suggest that miR-532-3p is potential as a serum biomarker for identifying drug-induced liver injury, leading to the accurate diagnosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARN Circulante , MicroARNs , Ratas , Animales , Acetaminofén/toxicidad , Cisplatino/toxicidad , MicroARNs/genética , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/genética
6.
BMB Rep ; 56(1): 15-23, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36379514

RESUMEN

After birth, animals are colonized by a diverse community of microorganisms. The digestive tract is known to contain the largest number of microbiome in the body. With emergence of the gut-brain axis, the importance of gut microbiome and its metabolites in host health has been extensively studied in recent years. The establishment of organoid culture systems has contributed to studying intestinal pathophysiology by replacing current limited models. Owing to their architectural and functional complexity similar to a real organ, co-culture of intestinal organoids with gut microbiome can provide mechanistic insights into the detrimental role of pathobiont and the homeostatic function of commensal symbiont. Here organoid-based bacterial co-culture techniques for modeling host-microbe interactions are reviewed. This review also summarizes representative studies that explore impact of enteric microorganisms on intestinal organoids to provide a better understanding of host-microbe interaction in the context of homeostasis and disease. [BMB Reports 2023; 56(1): 15-23].


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Organoides , Bacterias , Homeostasis
7.
Mar Drugs ; 20(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421992

RESUMEN

The diverse therapeutic feasibility of the sea urchin-derived naphthoquinone pigment, Echinochrome A (Ech A), has been studied. Simple and noninvasive administration routes should be explored, to obtain the feasibility. Although the therapeutic potential has been proven through several preclinical studies, the biosafety of orally administered Ech A and its direct influence on intestinal cells have not been evaluated. To estimate the bioavailability of Ech A as an oral administration drug, small intestinal and colonic epithelial organoids were developed from mice and humans. The morphology and cellular composition of intestinal organoids were evaluated after Ech A treatment. Ech A treatment significantly increased the expression of LGR5 (~2.38-fold change, p = 0.009) and MUC2 (~1.85-fold change, p = 0.08). Notably, in the presence of oxidative stress, Ech A attenuated oxidative stress up to 1.8-fold (p = 0.04), with a restored gene expression of LGR5 (~4.11-fold change, p = 0.0004), as well as an increased expression of Ly6a (~3.51-fold change, p = 0.005) and CLU (~2.5-fold change, p = 0.01), markers of revival stem cells. In conclusion, Ech A is harmless to intestinal tissues; rather, it promotes the maintenance and regeneration of the intestinal epithelium, suggesting possible beneficial effects on the intestine when used as an oral medication.


Asunto(s)
Mucosa Intestinal , Naftoquinonas , Humanos , Ratones , Animales , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Intestinos , Colon
8.
NPJ Regen Med ; 7(1): 62, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36261427

RESUMEN

Guiding the regrowth of thousands of nerve fibers within a regeneration-friendly environment enhances the regeneration capacity in the case of peripheral nerve injury (PNI) and spinal cord injury (SCI). Although clinical treatments are available and several studies have been conducted, the development of nerve guidance conduits (NGCs) with desirable properties, including controllable size, hundreds of nerve bundle-sized microchannels, and host stem-cell recruitment, remains challenging. In this study, the micropattern-based fabrication method was combined with stem-cell recruitment factor (substance P, SP) immobilization onto the main material to produce a size-tunable NGC with hundreds of microchannels with stem-cell recruitment capability. The SP-immobilized multiple microchannels aligned the regrowth of nerve fibers and recruited the host stem cells, which enhanced the functional regeneration capacity. This method has wide applicability in the modification and augmentation of NGCs, such as bifurcated morphology or directional topographies on microchannels. Additional improvements in fabrication will advance the regeneration technology and improve the treatment of PNI/SCI.

9.
Biomed Pharmacother ; 153: 113347, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35792394

RESUMEN

Olfactory loss has been considered as the earliest complication for the aging process while underlying mechanisms and therapeutic strategies remain unclear. Given the correlation between microglial activation and olfactory dysfunction, here we investigated whether the immunomodulatory action of mesenchymal stem cells (MSCs) can rescue the olfactory impairment in old mice. The intranasal delivery of MSCs limited microglial activation and neuronal apoptosis in the olfactory bulb (OB), leading to improvement in olfaction. MSCs down-regulated the proportion of CD86+ microglia and prevented the maturation of cathepsin S, one of the inflammatory mediators in olfactory impairment, via the suppression of p38 MAPK signaling. Notably, old astrocytes could not prevent excessive microgliosis because the endogenous production of Galectin-1 (Gal1), one of the key microglia regulators secreted by astrocytes, was not sufficiently upregulated in the aged brain despite the presence of reactive astrogliosis. Considering that Gal1 is known as a potent paracrine factor of MSCs, we investigated whether MSC-derived Gal1 could compensate for defective astrocyte function in terms of microglial regulation. MSCs and their culture supernatant (MSC-CM) could regulate the direction of microglial differentiation by impeding the polarization towards the pro-inflammatory M1 type; notably, a selective Gal1 inhibitor OTX008 could hinder this phenomenon, indicating that Gal1 is involved in immunomodulation exerted by MSCs. Also, acute microglial activation within the OB upon LPS infusion was attenuated by MSC-CM in a Gal1-dependent manner. Our study demonstrates the therapeutic benefit of MSCs on age-related olfactory dysfunction and suggests Gal1 as a key mediator of the anti-inflammatory action of MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Trastornos del Olfato , Animales , Galectina 1 , Ratones , Microglía , Olfato
10.
J Tissue Eng ; 13: 20417314221086491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340425

RESUMEN

Spinal cord injury (SCI) leads to disruption of the blood-spinal cord barrier, hemorrhage, and tissue edema, which impair blood circulation and induce ischemia. Angiogenesis after SCI is an important step in the repair of damaged tissues, and the extent of angiogenesis strongly correlates with the neural regeneration. Various biomaterials have been developed to promote angiogenesis signaling pathways, and angiogenic self-assembling peptides are useful for producing diverse supramolecular structures with tunable functionality. RADA16 (Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological conditions, is a self-assembling peptide that can provide mechanical support for tissue regeneration and reportedly has diverse roles in wound healing. In this study, we applied an injectable form of RADA16 with or without the neuropeptide substance P to the contused spinal cords of rats and examined angiogenesis within the damaged spinal cord and subsequent functional improvement. Histological and immunohistochemical analyses revealed that the inflammatory cell population in the lesion cavity was decreased, the vessel number and density around the damaged spinal cord were increased, and the levels of neurofilaments within the lesion cavity were increased in SCI rats that received RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover, real-time PCR analysis of damaged spinal cord tissues showed that IL-10 expression was increased and that locomotor function (as assessed by the Basso, Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was significantly improved in the RADA16/SP group compared to the control group. Our findings indicate that RADA16 modified with substance P effectively stimulates angiogenesis within the damaged spinal cord and is a candidate agent for promoting functional recovery post-SCI.

11.
Bioact Mater ; 13: 135-148, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224297

RESUMEN

In the last few decades, adverse reactions to pharmaceuticals have been evaluated using 2D in vitro models and animal models. However, with increasing computational power, and as the key drivers of cellular behavior have been identified, in silico models have emerged. These models are time-efficient and cost-effective, but the prediction of adverse reactions to unknown drugs using these models requires relevant experimental input. Accordingly, the physiome concept has emerged to bridge experimental datasets with in silico models. The brain physiome describes the systemic interactions of its components, which are organized into a multilevel hierarchy. Because of the limitations in obtaining experimental data corresponding to each physiome component from 2D in vitro models and animal models, 3D in vitro brain models, including brain organoids and brain-on-a-chip, have been developed. In this review, we present the concept of the brain physiome and its hierarchical organization, including cell- and tissue-level organizations. We also summarize recently developed 3D in vitro brain models and link them with the elements of the brain physiome as a guideline for dataset collection. The connection between in vitro 3D brain models and in silico modeling will lead to the establishment of cost-effective and time-efficient in silico models for the prediction of the safety of unknown drugs.

12.
Omega (Westport) ; 84(4): 1025-1044, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32397814

RESUMEN

Few studies of death preparation in South Korea are available. This article describes South Koreans' experiences of death and a funeral in a hospital setting to improve health care providers' ability to care for dying patients and their family. Using Colaizzi's phenomenological method, we conducted semistructured interviews with 40 South Koreans who had lost a family member in a hospital setting. Participants' statements were classified into 12 themes, 5 theme clusters, and 3 categories: (a) vagueness of funeral culture, (b) distortion of meaning in funeral culture, and (c) the need to prepare for death and process grief. Our findings are relevant to hospital-based health care providers who care for dying patients and their family. Targeted educational information could help health care providers better serve patients and family. Policy changes could improve quality of care by allowing health care providers to transition with the family from hospital units to a hospital-based funeral setting.


Asunto(s)
Familia , Pesar , Personal de Salud , Humanos , Investigación Cualitativa , República de Corea
13.
J Pineal Res ; 72(1): e12779, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826168

RESUMEN

The prevalence of head and neck squamous cell carcinoma (HNSCC) has continued to rise for decades. However, drug resistance to chemotherapeutics and relapse, mediated by cancer stem cells (CSCs), remains a significant impediment in clinical oncology to achieve successful treatment. Therefore, we focused on analyzing CSCs in HNSCC and demonstrated the effect of melatonin (Mel) and verteporfin (VP) on SCC-25 cells. HNSCC CSCs were enriched in the reactive oxygen species-low state and in sphere-forming cultures. Combination treatment with Mel and VP decreased HNSCC viability and increased apoptosis without causing significant damage to normal cells. Sphere-forming ability and stem cell population were reduced by co-treatment with Mel and VP, while mitochondrial ROS level was increased by the treatment. Furthermore, the expression of mitophagy markers, parkin and PINK1, was significantly decreased in the co-treated cells. Mel and VP induced mitochondrial depolarization and inhibited mitochondrial function. Parkin/TOM20 was localized near the nucleus and formed clusters of mitochondria in the cells after treatment. Moreover, Mel and VP downregulated the expression of markers involved in epithelial-mesenchymal transition and metastasis. The migration capacity of cells was significantly decreased by co-treatment with Mel and VP, accompanied by the down-regulation of MMP-2 and MMP-9 expression. Taken together, these results indicate that co-treatment with Mel and VP induces mitochondrial dysfunction, resulting in the apoptosis of CSCs. Mel and VP could thus be further investigated as potential therapies for HNSCC through their action on CSCs.


Asunto(s)
Neoplasias de Cabeza y Cuello , Melatonina , Línea Celular Tumoral , Humanos , Melatonina/farmacología , Dinámicas Mitocondriales , Células Madre Neoplásicas , Carcinoma de Células Escamosas de Cabeza y Cuello , Verteporfina
14.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208517

RESUMEN

Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Células Madre Mesenquimatosas/metabolismo , Superóxido Dismutasa/genética , Uniones Estrechas/metabolismo , Animales , Biomarcadores , Células CACO-2 , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Uniones Estrechas/patología
15.
BMB Rep ; 54(6): 323-328, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078528

RESUMEN

Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis. [BMB Reports 2021; 54(6): 323-328].


Asunto(s)
Infecciones por Bacteroidaceae/complicaciones , Antígenos CD36/metabolismo , Inflamación/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/fisiopatología , PPAR gamma/metabolismo , Porphyromonas gingivalis/fisiología , Animales , Infecciones por Bacteroidaceae/microbiología , Antígenos CD36/genética , Dieta Alta en Grasa , Progresión de la Enfermedad , Inflamación/metabolismo , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , PPAR gamma/genética
16.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806241

RESUMEN

Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.


Asunto(s)
Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Comunicación Paracrina , Animales , Bioingeniería , Células Dendríticas/metabolismo , Ingeniería Genética , Enfermedad Injerto contra Huésped/terapia , Humanos , Inmunidad , Inmunomodulación , Enfermedades Inflamatorias del Intestino/terapia , Células Asesinas Naturales/metabolismo , Lupus Eritematoso Sistémico/terapia , Macrófagos/metabolismo , Esclerosis Múltiple/terapia , Neutrófilos/metabolismo
17.
Biomaterials ; 271: 120752, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33730631

RESUMEN

Tissue repairing capacity and immunomodulatory effects of mesenchymal stem cells (MSCs) have been extensively utilized for treating various inflammatory disorders; however, inconsistent efficacy and therapeutic outcomes due to low survival rate after transplantation often restrain their clinical potential. To overcome these limitations, 3-dimensional culture (3D-culture) was established to augment stemness and paracrine functions of MSCs, although hypoxic stress at the core often leads to unexpected cell death. Thus, we designed a novel strategy to improve the microenvironment of MSCs by creating heterospheroids (HS) consisting of MSCs and quercetin (QUR)-loaded microspheres (MSCHS), to achieve local drug delivery to the cells. Notably, MSCHS exhibited resistance for senescence-associated phenotype and oxidative stress-induced apoptosis compared to 3D-cultured MSCs (MSC3D), as well as to 2D-cultured cells (MSC2D) in vitro. In a murine model of colitis, MSC3D and MSCHS exhibited enhanced anti-inflammatory impact than MSC2Dvia attenuating neutrophil infiltration and regulating helper T cell (Th) polarization into Th1 and Th17 cells. Interestingly, MSCHS provided better therapeutic outcomes compared to MSC3D, partially due to their enhanced survival capacity in vivo. Moreover, we found that MSC-derived paracrine factor, prostaglandin E2 (PGE2), can directly drive the epithelial regeneration process by inducing specialized tissue-repairing cell generation using the intestinal organoid culture. Importantly, MSC3D and MSCHS displayed an outstanding regeneration-inducing potency compared to MSC2D owing to their superior PGE2 secretion. Taken together, we suggest a convergent strategy of MSCHS formation with reactive oxygen species (ROS) scavenger, QUR, which can maximize the inflammation-attenuating and tissue-repairing capacity of MSCs, as well as the engraftment efficiency after transplantation.


Asunto(s)
Colitis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Células Cultivadas , Colitis/terapia , Inmunomodulación , Ratones
18.
Biomedicines ; 8(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276479

RESUMEN

Mesenchymal stem cells (MSCs) have been spotlighted in the field of cell therapies as a promising tool for the treatment of intractable inflammatory diseases. However, their therapeutic potency still shows a gap between preclinical and clinical settings, and distinctive characteristics of specific tissue-derived MSCs and definitive ways to maximize their beneficial functions have not been fully elucidated yet. We previously identified the unique MSCs population from human palatine tonsil (TMSCs) and revealed their superior properties in proliferation and ROS regulation. Based on these findings, we explored further characteristics of TMSCs particularly focused on immunomodulatory function. We found the merit of TMSCs as a therapeutic agent that retains favorable MSCs properties until relatively late passages and revealed that pre-treatment of TNF-α can enhance the immunomodulatory abilities of TMSCs through the upregulation of the PTGS2/PGE2 axis. TMSCs primed with TNF-α effectively restrained the proliferation and differentiation of T lymphocytes and macrophages in vitro, and more interestingly, these TNF-α-licensed TMSCs exhibited significant prophylactic and therapeutic efficacy in a murine model of autoimmune-mediated acute colitis via clinical and histopathological assessment compared to unprimed naïve TMSCs. These findings provide novel insight into the optimization and standardization of MSCs-based anti-inflammatory therapies, especially targeting inflammatory bowel disease (IBD).

19.
Biomedicines ; 8(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271948

RESUMEN

Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt-villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo-YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo-YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.

20.
Antioxidants (Basel) ; 9(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238520

RESUMEN

The immunoregulatory abilities of mesenchymal stem cells (MSCs) have been investigated in various autoimmune and allergic diseases. However, the therapeutic benefits observed in preclinical settings have not been reproducible in clinical trials. This discrepancy is due to insufficient efficacy of MSCs in harsh microenvironments, as well as batch-dependent variability in potency. Therefore, to achieve more beneficial and uniform outcomes, novel strategies are required to potentiate the therapeutic effect of MSCs. One of simple strategies to augment cellular function is genetic manipulation. Several studies showed that transduction of antioxidant enzyme into cells can increase anti-inflammatory effects. Therefore, we evaluated the immunoregulatory abilities of MSCs introduced with extracellular superoxide dismutase 3 (SOD3) in the present study. SOD3-overexpressed MSCs (SOD3-MSCs) reduced the symptoms of murine model of atopic dermatitis (AD)-like inflammation, as well as the differentiation and activation of various immune cells involved in AD progression. Interestingly, extracellular vesicles (EVs) isolated from SOD3-MSCs delivered SOD3 protein. EVs carrying SOD3 also exerted improved therapeutic efficacy, as observed in their parent cells. These results suggest that MSCs transduced with SOD3, an antioxidant enzyme, as well as EVs isolated from modified cells, might be developed as a promising cell-based therapeutics for inflammatory disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...